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Abstract
Distinct functional cell types in the medial entorhinal cortex (mEC) have been shown to repre-

sent different aspects of experiences. To further characterize mEC cell populations, we exam-

ined whether spatial representations of neurons in mEC superficial layers depended on the

scale of the environment and changed over extended time periods. Accordingly, mEC cells

were recorded while rats repeatedly foraged in a small or a large environment in sessions that

were separated by time intervals from minutes to hours. Comparing between large and small

environments, we found that the overall precision of grid and non-grid cell spatial maps was

higher in smaller environments. When examining the stability of spatial firing patterns over

time, differences and similarities were observed across cell types. Within-session stability was

higher for grid cells than for non-grid cell populations. Despite differences in baseline stability

between cell types, stability levels remained consistent over time between sessions, up to 1 hr.

Even for sessions separated by 6 hrs, activity patterns of grid cells and of most non-grid cells

lacked any systematic decrease in spatial similarity over time. However, a subset of ~15% of

mEC non-grid cells recorded preferentially from layer III exhibited dramatic, time dependent

changes in firing patterns across 6 hrs, reminiscent of previous characterizations of the hippo-

campal CA2 subregion. Collectively, our data suggest that mEC grid cell input to hippocampus

in conjunction with many time invariant non-grid cells may aid in stabilizing hippocampal spatial

maps, while a subset of time varying non-grid cells could provide complementary temporal

information.
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1 | INTRODUCTION

The medial entorhinal cortex (mEC) is composed of numerous func-

tional cell types with highly specialized firing patterns that are well

suited for supporting computations critical for spatial navigation and

spatial memory (Buzsaki and Moser, 2013; Hartley et al., 2014).

Subpopulations of entorhinal neurons represent heading direction,

speed, and the position of the animal in space (Fyhn et al., 2004;

Kropff et al., 2015; Sargolini et al., 2006), with those cells that are spe-

cialized for spatial coding often being further subdivided into grid

cells, border cells, and irregular spatial cells (Diehl et al., 2017; Hafting

et al., 2005; Savelli et al., 2008; Solstad et al., 2008). In line with a role

of mEC providing critical input downstream to hippocampus, subsets

of each of these functional classes have been reported to project

directly to the hippocampus (Zhang et al., 2013).

Input from spatially selective mEC cells are widely hypothesized

to give rise to the highly precise place fields observed in hippocam-

pus, with a wide range of models proposing how such a computation

could occur (Blair et al., 2008; Cheng and Frank, 2011; de Almeida

et al., 2009; Fuhs and Touretzky, 2006; O'Keefe and Burgess, 1996;

Rolls et al., 2006; Solstad et al., 2006). Yet, experimental studies indi-

cate that place coding in hippocampus is at least partially retained

after removal or inactivation of mEC (Brun et al., 2008; Hales et al.,

2014; Miao et al., 2015; Ormond and McNaughton, 2015; Robinson

et al., 2017; Rueckemann et al., 2016; Schlesiger et al., 2015), sug-

gesting that other inputs to hippocampus can compensate for loss of

a spatially precise mEC signal. In contrast, mEC projections were

found to be critical for CA1 hippocampal map stability (Hales et al.,

2014; Schlesiger et al., 2015), indicating that mEC neural circuits

may instead be particularly important for providing the hippocampus
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with a rigid and stable spatial representation. However, the stability

of the mEC spatial code over time has not been systematically

tested.

While the stability of mEC representations over time is not

known, it has recently been established that some of the main hippo-

campal projection targets of mEC cells show place cell firing patterns

that vary over time, even when all key aspects of the experience, such

as the spatial environment and the behavioral task, are highly familiar

and held constant (Lu et al., 2015; Mankin et al., 2015; Mankin et al.,

2012; Rubin et al., 2015; Ziv et al., 2013). In particular, the dissimilar-

ity of neuronal coding over time is pronounced in CA2, where place

cell representations of an environment are already dissimilar over

intervals of minutes. In contrast, the spatial coding of hippocampal

CA3 cells exhibits very limited change, even over periods as long as

30 hrs (Lu et al., 2015; Mankin et al., 2012). The co-occurence of

stable and drifting population codes has been proposed to constitute

a potential mechanism for decoding how long ago a particular event

occurred (Estes, 1955; Howard and Kahana, 2002), and such temporal

coding is thought to constitute a critical component of episodic mem-

ory representations (Tulving, 1972). In support of these mechanisms

being implemented across mammalian species, drifting network repre-

sentations have also been observed in the medial temporal lobe of

humans (Ezzyat and Davachi, 2014; Hsieh et al., 2014; Jenkins and

Ranganath, 2016; Manning et al., 2011; Nielson et al., 2015) and have

been shown to relate to behavioral performance or subjective evalua-

tions in temporal encoding tasks (Ezzyat and Davachi, 2014; Hsieh

et al., 2014; Jenkins and Ranganath, 2016).

Although it is now well established that hippocampal CA1 and

CA2 place cell representations gradually change over time, the neu-

ronal circuit and cellular mechanisms that generate such a drifting

code have not been identified. While CA3 projects to both CA1 and

CA2 (Dudek et al., 2016; van Strien et al., 2009), its highly stable rep-

resentations makes CA3 an unlikely candidate to provide a drifting

signal. One possibility is therefore that the rapid change over time

observed within the CA2 region is generated de novo locally, per-

haps due to the unique anatomical, cellular, and physiological proper-

ties of CA2 cells (Dudek et al., 2016; Jones and McHugh, 2011).

A stable signal from CA3 and a drifting signal from CA2 could

then combine to give rise to the intermediate stability that has

been reported for CA1 (Mankin et al., 2015). Alternatively, extra-

hippocampal areas, such as the entorhinal cortex, could pass along

an either stable or drifting code to one or more hippocampal subre-

gions. Owing to the highly spatial nature of cellular firing within mEC

and its strong projections to all hippocampal CA regions, we investi-

gated the stability of mEC firing patterns over extended time

periods. To test the stability of mEC spatial representations over

extended time, we recorded the activity patterns of the same mEC

cell populations while rats explored the same environment at the

same location in space over multiple sessions. The temporal intervals

between sessions ranged from 5 min to 6 hrs. Grid, border, and irreg-

ular cell types were classified within each session and for each func-

tional mEC cell type the stability of the spatial representation was

examined across sessions.

2 | MATERIALS AND METHODS

2.1 | Subjects and surgery

Experimental procedures were performed as approved by the Institu-

tional Animal Care and Use Committee at the University of California,

San Diego and according to National Institutes of Health and institu-

tional guidelines. Data were recorded from eight male Long Evans rats

(300–400 g) that were housed individually and maintained on a 12-h

light/dark schedule with lights off at 7:00 a.m. Data from three rats

(45 out of 313 cells) have been previously reported in a different

study (Diehl et al., 2017) and were reanalyzed here. Prior to behavioral

testing rats were implanted with a “hyperdrive” recording device con-

sisting of 14 independently movable tetrodes. For drive implantation,

rats were anesthetized with isofluorane (1.5–2.5% in O2) and given

buprenorphine (0.02 mg/kg, S.C.) as an analgesic. After opening a skull

window and removing dura, the hyperdrive was implanted above the

dorsal mEC 0.5–1.0 mm anterior to the transverse sinus and

4.6–5.2 mm lateral to the midline. Tetrodes were constructed from

17 μm platinum-iridium (90/10%) wire and were plated with a 1.5%

platinum solution to lower impedances to 125–325 kΩ at 1 kHz prior

to surgery.

2.2 | Behavioral procedures

After one week of recovery from surgery, rats were food restricted to

85% of free feeding weight and were trained to forage for randomly

scattered cereal crumbs in open field enclosures (80 cm by 80 cm

square, 100 cm diameter circle, 120 cm by 120 cm square). Each open

field had a single polarizing cue card (20 or 25 cm wide) placed on an

internal wall. Environments were always centered in the same location

within the room, the position of the cue card was kept constant, and

the recording system, experimenter, and other external room cues

were readily visible to the rats.

All rats were trained in blocks of four 10-min foraging sessions.

Two blocks of four 10-min sessions were conducted each day

separated by 6 hrs as described previously (Mankin et al., 2015;

Mankin et al., 2012). Training always occurred at the same time of day

with the first session starting between 8:00 a.m. and 10:00 a.m. and

the second session starting between 2:00 p.m. and 4:00 p.m. Start

times varied between rats, but a given rat always ran the morning

sessions at the same time and the afternoon sessions 6-hr later. All

recording blocks were flanked by 20-min sleep periods and rats were

given 5 min between sessions to rest in a pot away from the foraging

enclosure. Between sessions the floor of the open field was cleaned

with water. Single unit recordings in mEC began when the environ-

ments were highly familiar (at least 7 days of prior training) to not

confound instability over time with responses to novelty. Behavioral

procedures while recording mEC units were identical to training

procedures and continued until cells could no longer be recorded.

For three rats, training and recording sessions were performed in

the two smaller boxes (80 cm by 80 cm square enclosure and 100 cm

diameter circular enclosure) (Diehl et al., 2017). Within each block of

four sessions, two of the sessions were in the square environment

and two were in the circular environment, with the two shapes
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presented in a pseudorandom order. The current analysis focused on

the stability of maps, therefore all comparisons were made between

sessions of identical shape. For the remaining five rats training and

recording sessions were performed in the 120 cm square box with all

four recording sessions of each block conducted in the same

enclosure.

2.3 | Electophysiological recordings

Following surgery, tetrodes were gradually advanced toward the

superficial layers of mEC with one tetrode remaining in cortex to

serve as a reference. A second tetrode was rapidly advanced through

the brain to identify the beginning and end of mEC based on local field

potential (LFP) signatures. The remaining 12 recording tetrodes were

advanced 25 to 160 μm per day through mEC to record single unit

activity. When large amplitude units were observed, tetrodes were

not advanced in an effort to record the same cell population multiple

times over the course of successive recording sessions, sometimes

across multiple days. Advancement of tetrodes and recordings were

performed blind to any functional properties of recorded cells

ensuring an unbiased sampling of the mEC population. Recordings and

advancement of tetrodes continued until LFP criteria indicated that

each tetrode had been advanced to Layer 1.

For recording single units and LFP, hyperdrives were connected

through a multichannel, head-mounted preamplifier to a digital

Neuralynx recording system. Unit activity was amplified and band-

pass filtered between 0.6 kHz and 6 kHz. Spike waveforms above a

trigger threshold (35–55 μV) were time-stamped and digitized at

32 kHz for 1 ms. Continuous LFP was recorded from each tetrode, fil-

tered between 0.1 Hz and 900 Hz, and sampled at 2000 Hz. Position

data of a red and a green LED located on either side of the head-

mounted preamplifier were tracked at 30 Hz by a video camera

mounted above the experimental area to determine the rat’s x-y posi-

tion and head-direction.

Spike sorting was manually performed offline using a customized

version of MClust (Redish, A.D. MClust. http://redishlab.neuro

science.umn.edu/MClust/MClust.html) (Mankin et al., 2012). Sleep

periods before and after behavioral sessions were used to ensure

stability of recorded cells. The identity of individual cells was tracked

across recording sessions by applying identical cluster bounds across

sessions to compare the location of clusters in multidimensional

cluster space as has previously been described (Mankin et al., 2015;

Mankin et al., 2012). Clusters whose location in cluster space did not

change across recording sessions were identified as originating from

the same cell. Spiking autocorrelation was occasionally used as a sec-

ondary metric for confirming cluster identity across sessions, but

importantly no other firing properties, such as spatial firing pattern,

head direction firing, or theta modulation, were used to evaluate cells

across sessions. Only clusters that had well-separated boundaries

were included in the analysis. To quantify the quality of analyzed clus-

ters, we calculated the isolation distance of all recorded cells

(Schmitzer-Torbert et al., 2005). While we did not exclude data based

on isolation distance, others have set minimum isolation distances of

5 or 10 (Newman and Hasselmo, 2014; Perez-Escobar et al., 2016). Of

those clusters that we accepted for analysis, 99.5% had isolation

distances of at least 10. Putative interneurons were identified and

removed from the data set based on an average firing rate above

7.5 Hz. Note that this threshold is higher than typically used in the

hippocampus because many principal cells in entorhinal cortex fire at

intermediate rates.

2.4 | Histological analysis

At the completion of all experiments, rats were given an overdose of

sodium pentobarbital and were perfused transcardially with saline and

4% formaldehyde. Brains were extracted and post fixed for 24 hrs

before being transferred to a 30% sucrose solution and allowed to

sink. Sagittal sections (40 μm) were cut on a freezing microtome and

sections through the right mEC were mounted on slides and stained

with cresyl violet. Tetrode trajectories through mEC were determined

by 3D reconstruction of the sectioned tissue. Based on records of the

systematic movement of tetrodes through the brain and the trajectory

information, complemented by records of LFP profiles, tetrode loca-

tions on each recording day were assigned to either the deep or

superficial layers of mEC. Cells recorded from the superficial layers

were further localized to putative recordings from Layer 2 or Layer

3. Any recordings from the deep mEC layers or from the presubiculum

or parasubiculum were removed from the data set.

2.5 | Rate maps and functional firing properties

Rate maps were constructed by summing the total number of spikes

that occurred in each location bin (5 cm × 5 cm), dividing by the total

amount of time that the rat occupied the bin, and smoothing with a

5 × 5 bin Gaussian filter with a standard deviation of approximately

1 bin (Diehl et al., 2017):

[0.0025 0.0125 0.0200 0.0125 0.0025;

0.0125 0.0625 0.1000 0.0625 0.0125;

0.0200 0.1000 0.1600 0.1000 0.0200;

0.0125 0.0625 0.1000 0.0625 0.0125;

0.0025 0.0125 0.0200 0.0125 0.0025]

Bins that were never within a distance of less than 2.5 cm from

the tracked path or with total occupancy of less than 150 ms were

regarded as unvisited and were not included in the rate map. To con-

trol for possible influences of stationary episodes, periods below a

minimum running speed of 2 cm/s were excluded from all

calculations.

To identify grid cells, we evaluated the degree of six-fold rota-

tional symmetry in each cell’s spatial auto-correlation by calculating a

grid score and comparing it to a surrogate shuffled distribution pro-

duced by time shifting spike times with respect to an animal’s trajec-

tory as described previously (Diehl et al., 2017). For each cell, we

calculated rate maps as above but based on a bin size of 2.5 cm. To

then generate the spatial auto-correlation matrix, we calculated the

Pearson’s correlation between the firing rates of bins at corresponding

locations between the rate map and itself. One map was then shifted

in the x and y dimensions and the correlation was taken at all x-y off-

sets to produce the auto-correlation matrix. From this matrix, an

annulus that contained the first hexagon of peaks around the center,

286 DIEHL ET AL.

http://redishlab.neuroscience.umn.edu/MClust/MClust.html
http://redishlab.neuroscience.umn.edu/MClust/MClust.html


but excluded the central peak, was extracted. The average correlation

value of bins in the annulus was then taken at each angle from the

center (i.e., along a “ray”). These values were rotated in 30� steps and

correlated to the un-rotated average values. If sixfold symmetry exists,

the correlations at 30, 90, and 150� are expected to be low while the

correlations at 60 and 120� are expected to be high. A cell’s grid score

was thus taken as the difference between the average of the latter

and the average of the former sets of correlation values. Grid scores

were then compared to the 95th percentile of a shuffled distribution

of grid scores generated for each individual cell in each session

(i.e., chance value), and grid cells were positively identified as those

cells for which the majority of sessions had a grid score that exceeded

the chance value.

Firing field boundaries for grid cells were calculated as previously

described (Diehl et al., 2017) using a reference map across all record-

ings of the given cell. For recordings from the shape-change paradigm,

only the area common to the two shapes (80 × 80 cm) was used to

build the reference map. Field bounds were defined on the reference

map by building contours iteratively outwards until a threshold value

of 0.3 times the peak rate was reached. The minimum peak rate to

identify a field was 2 Hz, with a minimum field size of 250 cm2. For

cells with multiple fields, contours were calculated simultaneously for

all fields, and the edge of each field was defined as the contour at

which the threshold value was reached or where two fields met,

whichever came first.

To identify border cells, we calculated a border score for each

rate map (Solstad et al., 2008). We identified firing fields for each cell

in each session as described above using a minimum firing rate of

2 Hz, a threshold value of 0.3 times the peak field rate, and a minimum

field size of 250 cm2. The maximal extent of a single field along any

wall was taken as CM, the mean firing distance to the nearest wall was

taken as dm, and border score was calculated as: b¼ CM −dm
CM + dm

, and ranged

from −1 for cells with central firing to 1 for cells with firing aligned to

walls. Any rate map in which a firing field could not be identified was

not assigned a border score. As for grid cells, border scores were com-

pared to the 95th percentile of a shuffled distribution of border scores

generated for each individual cell in each session, and border cells

were identified as those cells for which the majority of sessions had a

border score that exceeded the chance value. For data recorded from

our small environment we identified only four border cells. Due to the

low cell number in the small environment, this cell type was only ana-

lyzed for the large environment.

To quantify spatial firing of cells we calculated a spatial informa-

tion score (SI) and a within session correlation (WSC) as described pre-

viously. SI per spike was calculated as: SI¼P
i Pi

Ri
R log2

Ri
R , where

i indexes the spatial bins, Pi is the probability of occupancy in each

bin, Ri is the mean firing rate in each bin, and R is the mean firing rate

across the spatial map (Skaggs et al., 1993). WSC was calculated for

each cell in each session by splitting the 10-min recording into the

first and second half. Rate maps were calculated for both 5-min

periods and a Pearson’s correlation was taken between the two (Diehl

et al., 2017). As for grid scores, chance level SI and WSC were calcu-

lated for each cell in each session by shuffling spike times.

Head Direction (HD) modulation was calculated as the mean

resultant length (MRL) of the polar plot generated by comparing cell

spiking to angular direction of the animal’s head. Using angular bins

with one degree resolution, the number of spikes was divided by the

amount of time spent at each bin.

Running speed modulation (speed score) was calculated for each

cell as the Pearson’s correlation between the instantaneous running

speed and the instantaneous firing rate (Kropff et al., 2015). Instanta-

neous running speed was calculated for each camera frame by passing

trajectory data through a Kalman filter. Instantaneous firing rate was

calculated across all frames in a session by summing the number of

spikes that occurred between subsequent frames, dividing by the time

between frames, and smoothing with a 250-ms wide Gaussian filter

with a standard deviation of 90-ms. Periods below an instantaneous

running speed of 2 cm/s and in the top 5% of running speeds were

excluded from the correlation.

Theta modulation was calculated by assigning each spike of a

given cell to the phase of the LFP theta at which it occurred. Theta

phases were plotted in a polar plot and modulation strength was taken

as the MRL.

2.6 | Spatial correlation, firing rate overlap, score
similarity, and comparisons across time

For all calculations, only pairs of rate maps from identical configura-

tions of the open field were compared. We calculated the spatial simi-

larity between two rate maps using Pearson’s correlation between the

firing rates of bins at corresponding locations. Any bins that were

unvisited in either map were excluded from the calculation. Firing rate

overlap was calculated for each rate map as: 1− R1−R2j j
R1+R2 where R1 is the

mean firing rate from map 1 and R2 is the mean firing rate from map

2. For grid cells, firing rate overlap was calculated independently for

each grid field and the values were averaged across all fields of a given

grid cell.

To compare the similarity of grid scores, speed scores, and HD

MRL values we calculated the absolute value of the change between

two sessions. This difference was then subtracted from 1 to yield a

“similarity value” of the score. Thus, for grid scores, a similarity of

1 means no difference in raw grid score between two sessions while a

similarity of 0.7 means that the raw grid score changed by 0.3

between the two sessions (e.g., 1.3 in session 1 and 1.6 in session 2).

As such, systematic drift in a score over time would be reflected by a

progressive decrease in similarity (i.e., negative slope).

Recording the same cell multiple times yields many pairwise com-

parisons that all share the same temporal delay. For example, across

the four recording sessions in a block there are three different pair-

wise comparisons of adjacent sessions (session 1 vs. 2, 2 vs. 3, and

3 vs. 4). Because some cells were recorded for longer than others, not

all cells had an identical number of pairwise comparisons for a given

temporal delay. Thus, to make sure that all cells contributed evenly to

all analyses when making any temporal comparison, we collected all

corresponding pairwise rate maps for a given cell and randomly drew

a single pair, meaning that each cell was included in an analysis exactly

one time, regardless of the total amount that a cell had been recorded.

As this method meant that each individual calculation was influenced
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by the nature of the random draw, we repeated each calculation

25 times for each cell and time interval, performing a new random

draw each time. The 25 repetitions were then averaged to a single

value for that cell and time interval. Note that in most cases 25 itera-

tions exceeded all possible pairwise comparisons but that taking the

average of randomly repeating comparisons would not bias the final

value for the cell.

2.7 | Chance level comparisons

For spatial correlation and rate overlap comparisons, we calculated

chance level values by shuffling cell identities. Instead of comparing

the same cell across sessions at two different time points, each cell

was compared to any other recorded cell selected at random. Just as

in the case of our standard calculations, this random matching across

cell identities was performed 25 times and averaged to yield a single

chance level value for each cell. This procedure provided chance level

similarity for each of the time intervals. In all cases, calculations of

chance values and shuffling of cell identities were performed indepen-

dently for the population of grid and non-grid cells (border and irregu-

lar spatial cells combined). This was done due to the periodic nature

of the spatial firing of grid cells and because the calculation of firing

rate overlap was different between the two groups (per field for grid

cells and across the entire map for non-grid cells).

2.8 | Statistics

For comparing isolation distances, we used a KS-Test to compare the

full data set to the subset of cells that were tracked over at least two

recording blocks and to compare the isolation distance between the

first and the last recording of those cells that were tracked. All com-

parisons between groups (WSC, SI, change in spatial correlation,

change in rate overlap, similarity of grid score, speed score, or HD

modulation) were made using either a Mann–Whitney rank-sum test

when comparing two groups, or a Kruskal-Wallis test with Tukey’s

HSD post hoc when comparing three or more groups. SI and WSC

values were corrected by subtracting each cell’s chance levels which

were obtained by calculating the corresponding values from shuffled

data (ΔSI and ΔWSC). Comparisons between median shifted WSC

and SI distributions were made using a KS-Test. Comparisons of slope

values (change over time) to zero were made using a Wilcoxon

signed-rank test. When sample sizes were small (n < 15) an exact test

statistic was calculated for the rank-sum and signed-rank tests. For

data recorded from the small environment, changes between shapes

made it such that for some cells and temporal lags it was not possible

to make a comparison between identical environments. Therefore,

comparisons were made using a Skillings-Mack test for repeated mea-

sure with missing data (Skillings and Mack, 1981) with a rank-sum test

for post hoc analysis. Determination of the subset of non-grid cells

that exhibited significant changes to their firing patterns over 6 hrs

was made by comparing calculated changes over time (Figure 4d) to

chance calculations based on shuffled cell identities. Cells that system-

atically varied over time were identified as those exhibiting change

values below the 2.5th percentile of the shuffled distribution (equiva-

lent to α = 0.05 for two-tailed statistics). For any evaluation of

correlation between two variables a Pearson’s correlation was per-

formed, although in all cases a Spearman’s correlation yielded statisti-

cally equivalent results. Comparisons of proportion of cells between

Layers 2 and 3 were done using Pearson’s chi-square test for categori-

cal data. All statistical comparisons were significant at p < .05 for two

tailed distributions.

3 | RESULTS

3.1 | Principal cells from mEC superficial layers were
recorded across multiple sessions within a day

To evaluate the stability of mEC spatial firing patterns over time, we

trained rats to randomly forage in an open field arena for eight 10-min

sessions within a day. Rats were trained to either explore two small

enclosures (an 80 cm by 80 cm square and a 100 cm-diameter circle)

or to explore one large enclosure (a 120 cm by 120 cm square). In the

morning of each day, rats performed a block of four 10-min foraging

sessions that were each separated by 5-min rest sessions. The morn-

ing block was followed by a 6-hr break, after which rats performed

another block of four 10-min foraging sessions in the afternoon.

Between the morning and afternoon blocks rats were returned to

their home cage. This design allowed us to evaluate the consistency

of mEC firing (n = 313 principal cells; Figure 1a,b) within a single

10-min session, across a series of sessions spanning roughly 1 hr, and

between sessions separated by several hours.

To compare the spatial firing patterns between sessions in the

same environment, we used previously published techniques to track

the same set of cells across multiple recording sessions (Mankin et al.,

2015; Mankin et al., 2012). Briefly, a spike cluster was identified as an

individual cell when the cluster remained in the same location in multi-

dimensional cluster space over a series of recording sessions as deter-

mined by applying the same cluster bounds across sessions, and when

the cluster was clearly separable from all other clusters in each record-

ing session within the series (Figure 1c,d). Identified cells were tracked

for as long as possible, ranging from a single block of four sessions to

10 recording blocks spanning five days. Cells were tracked until there

was no longer a spike cluster remaining in the tracked cluster space

for multiple behavioral or sleep sessions. While such a lack of spiking

could reflect periods of cellular inactivity during behavior, as has been

described in CA1 (Thompson and Best, 1989), we never observed

instances in which clusters were only detected in sleep sessions. We

also did not observe the disappearing and reappearing of clusters dur-

ing repeated behavioral sessions, contrary to previously described

observations for CA1 recordings under similar conditions (Mankin

et al., 2012). This observation is consistent with previous reports that

the same mEC cells that are active during sleep periods are also active

during exploration of an environment (Fyhn et al., 2004).

To quantify the quality of our single-unit clusters we calculated

the isolation distance in each session (Figure 1e). While we did not

exclude data based on isolation distance, 99.5% of our clusters would

be identified as high quality (isolation distance >10) based on previous

criteria for mEC recordings (Newman and Hasselmo, 2014; Perez-

Escobar et al., 2016). We compared the isolation distance between
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the full population of recorded cells and the subset of cells that were

tracked across multiple recording blocks and did not find a difference

(ks = 0.098, p > .05). We also found no difference in isolation distance

between clusters from the first and the last recording session of

tracked cells (ks = 0.069, p > .05) (Figure 1e).

3.2 | The spatial content of mEC cells depended on
the size of the environment

In both our small and our large environment, we identified grid cells,

border cells, as well as a population of irregular cells (firing not in a

grid pattern or along a wall) with a wide range of spatial firing patterns

(Figure 2a). Within our small environment, we only detected four bor-

der cells so this population was not analyzed further. Whereas some

irregular cells had highly precise spatial firing patterns, the firing of

other irregular cells was considerably more diffuse. To quantify each

cell’s spatial firing pattern, we calculated the spatial information (SI: a

metric of the level of spatial content conveyed by each spike) and the

within session correlation (WSC: a metric of the stability of the spatial

firing pattern within a single 10-min session) (Figure 2b-e). These two

metrics were adjusted by subtracting each cell’s chance activity (ΔSI

or ΔWSC).

Using these metrics for comparisons of spatial firing patterns in

single 10-min recording sessions yielded three main results, all of

which matched with our subjective observations of the spatial firing

properties of mEC cells. First, spatial firing of grid cells and border

cells was comparable and was more precise and consistent than that

of irregular cells (small box, grid vs. irregular, ΔSI,: z = 3.89, p < .001;

ΔWSC,: z = 4.39, p < .001; large box, grid vs. border vs. irregular, ΔSI:

Chi-Sq[2] = 38.50, p < .001; post hoc, grid vs. irregular and border

(a)

(c)

(d)

(e)

(b)

FIGURE 1 Medial entorhinal cells were recorded across multiple sessions in either small or large environments. (a) Schematic of the two

experimental paradigms. Rats repeatedly randomly foraged in the same open field environment. A block of four sessions in the morning was
followed by a block of four sessions 6-hr later. Each foraging session within a block lasted 10-min with 5-min rest periods in between. Individual
mEC cells were tracked across sessions and blocks. Three rats explored a small environment with flexible walls that were configured as either a
square (80 cm by 80 cm) or a circle (100 cm diameter). Note that for this study all comparisons were between sessions in like-shaped
environment configurations. The remaining five rats explored a single large square environment (120 cm by 120 cm). (b) Example histological
sections of mEC tetrode tracks from four rats. The superficial layers are delineated by the black line and the end of each tetrode track is marked
with a red dot. Scale bars = 500 μm. (c) Examples of two well isolated clusters that were tracked across sessions in the morning and afternoon.
Each cluster remained in the same location in multidimensional cluster space allowing for the determination that each represented a single cell
tracked across the day. (d) Rate maps of the tracked cells from c. Firing rates are color-coded according to the scale bar on the right and the peak
rate is noted below each map. Both cells maintain similar spatial firing patterns across the day, but rate maps were never used for cell tracking.
(e) Cluster isolation distance was calculated for all recorded mEC cells and for only those cells that were tracked over multiple recording blocks.
Of those cells that were tracked, we also calculated the isolation distance the first and the last time that the cell was recorded. The distribution of
isolation distances was comparable across all four conditions. While we did not use any quantitative threshold for our clusters, over 99.5% of our
clusters have an isolation distance in excess of previously published cutoffs (isolation distance of 5 or 10; dashed gray lines) [Color figure can be
viewed at wileyonlinelibrary.com]
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vs. irregular, both p < .001; grid vs. border, n.s; ΔWSC: Chi-Sq

[2] = 54.19, p < .001; post hoc grid vs. irregular and border vs. irregu-

lar, both p < .001; grid vs. border, n.s.). Second, spatial firing patterns

of both grid and irregular cells that were recorded in the small envi-

ronment were more precise than spatial firing patterns of cells

recorded in the large environment (small vs. large box, grid, ΔSI:

z = 2.96, p < .01; irregular: z = 5.04, p < .001; small vs. large box, grid,

ΔWSC: z = 3.27, p < .01; irregular: z = 2.75, p < .01). Interestingly, the

size of the environment did not alter the shape of the SI or WSC

distributions, but instead lead to a simple scalar decrease in the level

of spatial firing across all mEC cells. After shifting both distributions to

a median of 0 there was no difference in the distributions of data

recorded in the small and large environments (small vs. large box, grid,

SI: ks = 0.35, p > .05; irregular: ks = 0.14, p > .05; small vs. large box,

grid, WSC: ks = 0.18, p > .05; irregular: ks = 0.15, p > .05). Due to the

fact that data from the two environment sizes were recorded from

different rats it is possible that differences in anatomical recording

location could explain the difference in spatial firing properties.

(a) (d)

(b)

(c)

(e)

(f)

FIGURE 2 The spatial firing patterns of mEC cells were reliable within a single 10-min session. (a) Rate maps of example grid, border, and

irregular cells recorded from the two environment sizes. Firing rates are color-coded according to the scale bar on the right. For each rate map,
the peak rate is noted above and SI is noted below. In the box marked by the stippled line, rate maps from each cell are shown separately for the
first and second half of the 10-min behavioral session, and the WSC is noted below each pair. The example cells are identified in the scatter plots
in (b), (d), and (f ) as solid black circles. G, grid cell. Ir, irregular cell. B, border cell. (b) Average SI of mEC cells in a single 10-min session as a
function of the chance level SI based on shuffling procedures. Data are segregated based on box size and by grid, border, and irregular cells.
(c) CDFs of the difference between the actual SI and chance-level SI (ΔSI). (d) Average WSC of mEC cells in a single 10-min session as a function
of chance level WSC. (e) CDFs of the difference between actual WSC and chance-level WSC (ΔWSC). (f ) ΔSI is plotted as a function of ΔWSC
for each recorded mEC cell. Despite ΔSI and ΔWSC quantifying different aspects of the spatial firing patterns of a cell, the two were highly
correlated (r = .78, p = 1.89 × 10−65). Cells were identified as spatial if both SI and WSC were above chance (blue quadrant) and as nonspatial if
WSC and/or SI was below chance (red quadrants). All grid and border cells in the small and large environment and most irregular cells in the small
environment were classified as spatial. However, about half of the irregular cells in the large environment (119 of 228) were nonspatial [Color

figure can be viewed at wileyonlinelibrary.com]
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However, tetrodes were targeted to the same location in all rats, and

recordings came from broad, highly overlapping regions across all ani-

mals. Furthermore, within each animal there was considerable inter-

mixing of cells with high and low SI and/or WSC, with many instances

of simultaneous recordings of high and low values on the same tet-

rode, making anatomical location an unlikely explanation for the dif-

ferences between box sizes. Third, whereas about 90% of mEC cells

recorded in our small environment exhibited spatial firing patterns in

excess of what would be expected by chance (i.e., ΔSI and ΔWSC >0),

the proportion of significantly spatial cells was reduced to ~55% for

cells recorded in the large environment. For further examination of

the stability of spatial firing of mEC cells, we segregated irregular cells

into two groups: those with SI and WSC above chance levels (spatial)

and those with SI and/or WSC below chance level (nonspatial)

(Figure 2f). Taken together, mEC cells were generally less spatial in a

larger environment, such that a larger proportion of cells were charac-

terized by spatial firing below chance levels.

3.3 | Medial entorhinal cortex cells were stable
across tens of minutes

After establishing that the majority of mEC cells exhibited spatial firing

patterns that were reliable over the course of a single 10-min record-

ing session, we next asked whether mEC firing patterns were consis-

tent when rats randomly foraged in the same environment repeatedly.

As each of our recording blocks consisted of four open field foraging

sessions, it was possible to compare the similarity of spatial represen-

tations between sessions as a function of the temporal distance

between them, which corresponded to either 15, 30 or 45 min

(Figure 3a). Past work has shown that in the hippocampus, CA1 and

CA3 place cell representations remain highly stable over the course of

an hour, while CA2 cells already begin to exhibit substantial changes

after only 15 min (Mankin et al., 2015). Thus, we sought to determine

whether the trajectory of stability of mEC representations over time

resembled either the stable time invariant CA3 representations or the

time varying CA2 representations.

While we observed that the similarity of spatial firing patterns

across sessions was highest in grid cells and lowest in irregular non-

spatial cells, across all groups of cells both the spatial firing patterns

and the overall firing rate of mEC cells were just as similar between

sessions separated by 45 min as when sessions were separated by

only 15 min (Figure 3b,c). Although the spatial correlation between

sessions varied across individual cells and across cell classes (grid, bor-

der, irregular spatial, irregular nonspatial), individual cells exhibited

considerable consistency in their spatial correlation values across all

three lags. Furthermore, even cells that had been classified as nonspa-

tial based on activity within a single session had spatial correlations

across sessions in excess of chance levels, suggesting that our classifi-

cation criteria were overly conservative and that in fact virtually all

mEC cells exhibited measurable spatial firing patterns across repeti-

tions of the same environment.

For mEC cells recorded in the single large environment, we quan-

tified the degree of change in spatial correlation and rate overlap over

time (i.e., the trajectory of stability) by fitting the data of each cell

across the three time lags with a linear regression and calculating the

slope of the fit line (Figure 3d). We found that the rate of change in

spatial correlation was not different from zero for all four groups of

mEC cells (grid: signed-rank = 28; border: z = 1.94; irregular spatial:

z = −1.93; irregular nonspatial: z = −1.50; all p values >.05) as was the

case for the rate of change in firing rate overlap for grid cells (signed-

rank = 16, p > .05). Border cells as well as both groups of irregular

cells had significant decreases in firing rate overlap over time (border:

z = −2.19, p < .05; irregular spatial: z = −4.17, p < .001; irregular non-

spatial: z = −3.91, p < .001), but in each case the average decrease

was less than 5% over the course of three behavioral sessions. Addi-

tionally, we found no differences in slope values between the four

mEC cell types recorded in the large box for spatial correlation (grid

vs. border vs. irregular spatial vs. irregular nonspatial: Chi-Sq

[3] = 6.96, p > .05) or rate overlap (Chi-Sq[3] = 0.97, p > .05) indicat-

ing that all cell types had comparable levels of firing stability over tens

of minutes.

For the subset of cells that were recorded in the small environ-

ment, alternating between two shapes meant that it was not always

possible to compare between identical environments at all three tem-

poral lags. For example, for a recording block with the order [Square,

Circle, Circle, Square] it would be possible to evaluate firing with Lag

1 (between circles) and Lag 3 (between squares), but there would be

no comparison in which identical environments were separated by

Lag 2. Thus, for these data only group averages at each lag are pre-

sented and statistical considerations were taken to account for miss-

ing data points (see methods). For both grid and irregular spatial cells

recorded from the small environment, there was no systematic

decrease in spatial correlation or firing rate overlap when comparing

the three temporal lags (spatial correlation, grid: t(2) = 0.88, p > .05;

irregular spatial: t(2) = 8.55, p < .05, Lag 1 vs. Lag 3 p > .05; rate over-

lap, grid: t(2) = 2.49, p > .05; irregular spatial: t(2) = 0.64, p > .05). As

there were only five irregular cells recorded in the small environment

with spatial firing below chance (nonspatial), this group was not ana-

lyzed. While data for these analyses were combined between both

the square and circle shaped enclosures, we observed the same

results when examining data from each shape separately. Further-

more, baseline levels (i.e., Lag 1 comparisons) of spatial correlation

and rate overlap were not different between the square enclosure

and the circular enclosure (spatial correlation at Lag 1, square

vs. circle, grid: rank-sum = 58; irregular: z = 1.80; rate overlap at Lag

1, square vs. circle, grid: rank-sum = 58; irregular: z = 0.07; all

p values >.05).

Lastly, we sought to compare the stability of the spatial firing of

mEC cells between sessions to the stability within a single 10-min ses-

sion (Figure 3e). WSC and spatial correlation across pairs of rate maps

separated by Lag 1 were highly correlated (r = .89, p = 4.83 × 10−106)

indicating that those cells that tended to have more consistent spatial

firing within a single session also had more consistent firing across

repeated exposures to a given environment. A similar pattern was

observed when comparing WSC to spatial correlation across Lag

3 (r = .80, p = 6.75 × 10−69), further supporting our finding that the

spatial firing of mEC cells did not change systematically over tens of

minutes.
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FIGURE 3 Medial entorhinal cortex representations were stable across tens of minutes. (a) Schematic of potential comparisons for evaluating

changes within a block of four sessions, and rate maps of seven example cells across the four sessions. Font color for each rate map label
corresponds to the legend in (b). Firing rate maps were compared between adjacent sessions (Lag 1), between sessions that are two apart (Lag 2),
or between sessions that are three apart (Lag 3). (b) Spatial correlation of mEC cells across lags of 1, 2, or 3 sessions. Data are segregated based
on environment size (small box: SB; large box: LB) and grid, border and irregular cells. Irregular cells recorded from the large environment are
further segregated into spatial and nonspatial groups (see Figure 2f). Left, spatial correlation values of individual cells in the large environment. A
random subset of up to 15 cells per group was selected for illustration purposes. As the order of the shape presentation in the small environment
was varied, not all lag comparisons were available for each cell. Thus, individual cell data do not include cells from the small environment. Right,
group median � SEM for mEC cell types in the small and large environments. Chance level correlations were calculated for grid and non-grid cell
populations by repeating the same calculations after shuffling cell identities. (c) Firing rate overlaps of mEC cells across lags of 1, 2, or 3 sessions
presented as in B with individual cells on the left and group averages on the right. Rate overlap values for grid cells were calculated for each grid
field and averaged across all fields of a grid cell. (d) Changes in spatial correlation and firing rate overlap over time were calculated for each cell by
taking the slope of the best fit line of data in (b) and (c). CDFs of the change over time are shown for data recorded from the large environment.
For data from the small environment, population average values were used to calculate changes over time and are presented as a single point per
group. (e) Spatial correlation for each cell across sessions separated by Lag 1 (top) or Lag 3 (bottom) are shown as a function of the average WSC
of the cell [Color figure can be viewed at wileyonlinelibrary.com]
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3.4 | Firing patterns of grid cells and the majority of
non-grid cells were stable over 6 hrs

After observing that mEC representations did not change across inter-

vals of less than 1 hr, we determined whether representations were

stable over the course of several hours. As we were able to track the

identity of a subset of our mEC cell population from the morning to the

afternoon (159 of 313 cells), it was possible to compare their firing

properties between sessions separated by less than 1 hr (either within

the morning or afternoon block) and between sessions that were sepa-

rated by 6 hrs (between the morning and afternoon block) (Figure 4a).

In general, mEC cells appeared to be largely consistent in their firing

patterns from the morning to the afternoon, exhibiting approximately

the same spatial firing patterns at comparable firing rates (Figure 4b).

To quantify the stability of mEC firing, we compared spatial correlations

and firing rate overlap values between rate maps separated by less than

1 hr and those separated by 6 hrs (Figure 4c). We also calculated the

change over time (Figure 4d), although this was simply the difference

between the two time points, as opposed to the slope of a fit line as

calculated for Figure 3d. Our first observations were that the firing

characteristics of mEC grid cells over time were not influenced by the

size of the recording environment (small box vs. large box for change in

spatial correlation: rank-sum = 37, p > .05; change in rate overlap:
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rank-sum = 36, p > .05). For our groups of non-grid cells, there were

neither differences depending on the size of the environment nor

depending on whether cells were classified as border, irregular spatial,

or irregular nonspatial in the large box (irregular spatial small box

vs. border large box vs. irregular spatial large box vs. irregular nonspatial

large box, change in spatial correlation: Chi-Sq[3] = 1.35, p > .05;

change in rate overlap: Chi-Sq[3] = 2.01, p > .05). Thus, for subsequent

statistical comparisons we grouped all grid cells together and all non-

grid cells together regardless of environment size, cell classification, or

degree of spatial firing. Additionally, while data from the small enclosure

were combined between square and circular shaped environments, we

found that, when examined separately, data recorded from the square

shaped enclosure and data from the circular enclosure were comparable

and that the cells’ baseline spatial similarity was not different between

the two shapes (spatial correlation <1 hr, square vs. circle, grid: rank-

sum = 51; irregular: z = −0.76; rate overlap <1 hr, square vs. circle, grid:

rank-sum = 40; irregular: z = 0.60; All p > .05).

In evaluating firing over 6 hrs, we found that the spatial firing pat-

tern and overall firing rate of mEC grid cells was stable over time

(change in spatial correlation vs. zero: signed-rank = 30, p > .05; change

in rate overlap vs. zero: signed-rank = 19, p > .05). Such high stability is

in stark contrast to the rapid decorrelation over time that we previously

described for the hippocampal CA2 region (Figure 4e; Data reanalyzed

from Mankin et al., 2015 and presented for comparison). As a comple-

ment to our analysis of the spatial firing patterns of grid cells, we also

examined whether grid scores (a numerical evaluation of hexagonal

periodicity) of our grid cell population changed as a function of time

(Figure 5). We compared the similarity of grid score values across tens

of minutes (Figure 5a) or across 6 hrs (Figure 5d) and calculated the

degree of change over time to determine if sessions separated by lon-

ger periods of time would have grid scores that were more dissimilar

than sessions separated by shorter periods (Figure 5b,e). Just as for spa-

tial correlation and firing rate overlap we found no systematic changes

in grid scores over either short (small box, difference in similarity across

lags: t(2) = 0.38, p > .05; large box, change in similarity vs. zero: signed-

rank = 30, p > .05) or long time periods (small box, change in similarity

vs. zero: signed-rank = 11, p > .05; large box: signed-rank = 6, p > .05).

Furthermore, for both timescales we observed no relationship between

a cell’s average grid score and its degree of change over time (minutes,

large box: r = .23; hours, small box: r = .08; hours, large box: r = −.21;

all p values >.05) (Figure 5c,f). Thus, the quantitative periodicity, firing

rates, and spatial firing patterns of grid cells all remained highly stable

over elapsed time.

Whereas the firing patterns of all grid cells remained stable over

time, we observed a clear negative tail in the distribution of non-grid

cells for both spatial pattern and firing rate change (Figure 4e). As

such, the average change in spatial correlation or rate overlap of the

non-grid cell population was significantly below zero (change in spatial

correlation vs. zero: z = −5.17, p < .001; change in rate overlap

vs. zero: z = −6.66, p < .001). To determine which non-grid cells exhib-

ited substantive changes over time, we compared the change in spa-

tial correlation or rate overlap to chance distributions generated by

performing the exact same calculations but shuffling cell identities

such that pairwise comparisons were across different cells (see

methods). We could then compare the behavior of non-grid cells to

chance, identifying those cells with a degree of change below the

2.5th percentile (α = 0.05 for two-tailed statistics) as exhibiting a sys-

tematic decrease in their spatial correlation or rate overlap. Using this

method, we observed that 16% of non-grid cells exhibited significant

changes as a function of time in their spatial firing pattern and that

16% exhibited changes over time in their overall firing rate, leaving a

large portion of the non-grid cell population that were not character-

ized by systematic changes in firing patterns over time. Furthermore,

the proportions of cells that changed were comparable across envi-

ronment size, cell classification, and degree of spatial firing (irregular

spatial, small box: 17% and 22% for space and rate change; border,

large box: 15% and 23%; irregular spatial, large box: 9% and 14%;

irregular nonspatial, large box: 24% and 14%).

FIGURE 4 Medial entorhinal cortex grid cells and most non-grid cells were stable over time but a subset of non-grid cells changed. (a) Schematic

of comparisons between rate maps separated by less than 1 hr or with a 6-hr delay. (b) Rate maps of 12 example cells that were tracked from the
morning to the afternoon sessions. Font color for each rate map label corresponds to the legend in (c). For cells that were recorded in both a
square and a circular enclosure, only sessions in identical shapes were compared. In general, the spatial firing patterns of mEC cells remained
similar over the course of the day. However, a few cells exhibited major changes in their firing patterns. (c) Spatial correlation (left) and firing rate
overlap (right) for mEC cells. Scatter plots for each of these measurements are between rate maps separated in time by less than 1 hr and rate
maps separated by 6 hrs. Data are color-coded by environment size (small box: SB; large box: LB) and by grid, border, and irregular cells. Irregular
cells that were recorded in the large environment are further divided into spatial and nonspatial cells. The median values for each group are
shown as a filled circle � standard deviation. Chance levels are plotted for grid and non-grid populations as determined by shuffling cell identities.
(d) The change in spatial correlation and firing rate overlap over time was calculated for each cell by taking the difference between comparisons
across less than an hour and comparisons across 6 hrs. Difference values were also computed for the chance calculations to yield a null
distribution of change over time. The chance distribution of the non-grid cell population is plotted as the shaded region spanning between the
2.5th and 97.5th percentiles of the distribution. Cells with a value outside of this region would be identified as those with significant change over
time. (e) Top, previously published recordings of hippocampal cells across 6 hrs in a small environment (Mankin et al., 2015) were reanalyzed with
the same methods as used here for mEC data. Bottom, mEC data from the small environment are redrawn from panel (d) (grid: G; non-grid: NG).
Note that the spatial correlations of hippocampal cells at short time intervals are generally considerably higher than that of mEC non-grid cells
although non-grid cells nonetheless have sufficiently high correlation values to preclude floor effects (see spatial correlation values in Figures 3b
and 4c). Here, we are plotting the relative change over time with respect to each brain region’s respective baseline. Thus, values reflect relative
change, not absolute similarity. While these plots allow for an approximate comparison between mEC and hippocampal data, direct statistical
comparisons were not made due to low mEC cell numbers, lack of any simultaneous recordings between the two regions, and the fundamentally
different spatial firing patterns between hippocampal place cells and mEC grid and non-grid cells [Color figure can be viewed at
wileyonlinelibrary.com]
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3.5 | Speed and head direction tuning of mEC cell
populations remained stable over time

While our analysis thus far has categorized mEC cells according to

their spatial firing patterns (grid, border, and irregular), mEC cells can

also be strongly modulated by an animal’s heading direction (HD) or

running speed (Kropff et al., 2015; Sargolini et al., 2006). To determine

whether representations of HD or running speed varied systematically

over time we adapted our analysis to compare the similarity of HD

mean resultant length (MRL) values and speed scores across sessions

separated by tens of minutes (Figure 6) or across sessions separated

by 6 hrs (Figure 7). As HD or speed modulation occur in conjunction

with spatial modulation in grid, border, or irregular cells, we performed

these analyses on our entire population of mEC cells, irrespective of

any functional classification. In examining HD and speed score across

our short time period (Figure 6a,b), we found no difference in score

similarity across lags for mEC cells recorded in the small enclosure

(HD: t(2) = 4.68, p > .05; speed score: t(2) = 0.64, p > .05). For

recordings in the large enclosure the decrease in score similarity over

tens of minutes reached significance (HD: z = −1.99, p < .05; speed

score: z = −2.36, p < .05), although the magnitude of the change was

small. Furthermore, there was no significant relationship between a

cell’s average HD or speed score and the change in the value over

time (HD: r = −.08, p > .05; speed score: r = −.04, p > .05) (Figure 6c)

indicating that those mEC cells that might be identified as HD or

speed cells had no increased propensity to vary their respective firing

characteristics systematically over time. In tracking the same cells

across a 6-hr period, we found no significant change over time in HD

or speed modulation (Figure 7a,b). For both HD and speed scores, the

decrease in similarity over 6 hrs was no different from zero (HD, small

box: z = −0.92; large box: z = −0.13; speed score, small box: z = −0.44;

large box: z = −1.37; All p > .05). Additionally, for both metrics there

was no relationship between a cell’s average value and the change

over time (HD, small box: r = .21; large box: r = −.03; speed score,

small box: r = −.07; large box: r = .06; All p > .05) (Figure 7c).
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FIGURE 5 Grid scores did not vary systematically over time. (a) Similarity of grid scores of mEC grid cells across lags of 1, 2, or 3 sessions and

(b) the change over time are plotted as in Figure 3. Grid score similarity was calculated as 1 minus the absolute value of the difference between
raw grid scores in two sessions. Thus, a similarity value of 1 indicates no change in raw grid score and a value of 0.7 indicates that grid score
changed by 0.3 between sessions. Data for the two environment sizes are shown separately. (c) Change in grid score similarity for data recorded

from the large environment is plotted as a function of the cell’s average grid score across all recorded sessions. (d, e) similarity of grid scores of
mEC grid cells across sessions separated by less than 1 hr or 6 hrs are plotted as in Figure 4. (f ) Change in grid score similarity across 6 hrs is
plotted as a function of the cell’s average grid score across all recorded sessions
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Therefore, speed and HD tuning of mEC cell populations did not sys-

tematically vary over time.

3.6 | Non-grid cells that changed over time were
preferentially recorded from Layer 3 over Layer 2

Having identified that any systematic changes over time within the

mEC network were restricted to the spatial firing or overall firing rate

in a subset of the non-grid cell population, we sought to gain further

insight into this group of cells. We first verified that our observed

changes over time were not a consequence of poor single unit cluster

cutting procedures as there was no relationship between changes

over time and changes in a cell’s isolation distance (change in spatial

correlation: r = .06, p > .05; change in rate overlap: r = .01, p > .05)

(Figure 8a). Next, we sought to determine whether there were any fir-

ing properties that may identify non-grid cells that change over time

as a distinct subset of the mEC population. We did not observe any

relationship between changes over extended time and a cell’s average

firing rate, waveform shape, strength of theta modulation, spatial

information, or within session correlation (change in spatial correla-

tion: r ranged from −.14 to .08, all p > .05; change in rate overlap:

r ranged from −.11 to .13, all p > .05) (Figure 8b). There were also no

correlations between border score, HD modulation, or speed score

(change in spatial correlation: r ranged from −.15 to .09, all p > .05;

change in rate overlap: r ranged from −.10 to .03, all p > .05)

(Figure 8c), suggesting that the subpopulation of non-grid cells that

change over time does not correspond to a functional category of

mEC cells. Thus, those cells that changed over time did not appear in

any way distinct, nor would it have been possible to identify a priori

which cells would change based on the activity pattern within a single

session.

As we observed changes over time in both the spatial firing and

overall firing rate of a subset of our non-grid cells we next sought to

determine if there was any relation between the two modalities.

Across all non-grid cells, there was a weak relationship between

changes in space and changes in rate (r = .38, p < .001) with a few

cells responding in both dimensions, but there were also a large num-

ber of cells that altered only their spatial pattern or only their firing

rate (Figure 9a) suggesting that spatial firing patterns and overall firing

rates are likely modulated independently. Lastly, as mEC superficial

Layers 2 and 3 have highly differential projection patterns to CA3 and

CA1 (van Strien et al., 2009), we asked if there were any anatomical
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FIGURE 6 Head direction and speed modulation did not vary systematically over tens of minutes. (a, b) Similarity of HD modulation (left) and

speed scores (right) of all mEC cells across lags of 1, 2, or 3 sessions (a) and the change over time (b) are plotted as in Figure 3. Similarity values
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differences between non-grid cells that changed over time and those

that did not. For both changes in spatial firing and changes in overall

firing rate, we found on average no difference between non-grid cells

recorded from Layer 2 and from Layer 3 (Layer 2 vs. Layer 3, change

in spatial correlation: z = 1.41, p > .05; change in rate overlap:

z = −0.28, p > .05). Yet, examination of the proportion of non-grid

cells exhibiting significant changes in their spatial firing patterns over

time revealed that these cells tended to be more abundant in mEC

Layer 3 as compared to Layer 2 (proportion of Layer 2 vs. Layer 3 cells

with significant change over time, spatial correlation: Chi-Sq = 5.88,

p < .05; rate overlap: Chi-Sq = 0.10, p > .05) (Figure 9b). Thus, it

appears that Layer 3 non-grid cells may be more likely to exhibit large

scale changes in their spatial firing pattern over time, even though

there was no clear difference between the average change of mEC

Layer 2 compared to Layer 3 non-grid cells.

4 | DISCUSSION

Hippocampal spatial representations have previously been shown to

change over time, and stability of hippocampal representations

further decreases when inputs from mEC to hippocampus are dam-

aged (Hales et al., 2014; Schlesiger et al., 2015). We therefore asked

whether spatial firing patterns of mEC grid and non-grid cells are

stable over extended time periods such that they are in a position

to provide a stabilizing signal to the hippocampus. Within a single

recording session, we found high precision and stability of spatial

firing patterns for most mEC cells. However, environment size

determined the degree of spatial precision. SI and WSC were signifi-

cantly higher for both grid and irregular cells in a small box com-

pared to a large box. Furthermore, while almost all irregular cells

had spatial firing patterns above chance levels in the small box,

about half of irregular cells were nonspatial in the large box. We

then evaluated the consistency of mEC firing patterns over time.

Irrespective of environment size, we observed that grid cell activity

was highly consistent across repeated exposures to the same envi-

ronment both over tens of minutes and over 6 hrs. Although the fir-

ing patterns of the collective non-grid cell population were less

precise and stable than grid cells, changes in the activity patterns of

the majority of the population were not correlated with elapsed

time, with the exception of a subset of 10–20% of the population.

In this small subset of non-grid cells, we observed a dramatic
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change in the spatial firing or overall firing rate across a 6-hr period.

Further investigation revealed that those non-grid cells that chan-

ged over time were preferentially recorded from Layer 3, but that

we could not predict from the firing characteristics within a 10-min

recording session whether a cell would show instability over longer

time intervals. Taken together, our data suggest that the mEC grid

cell input to hippocampus in conjunction with the majority of time

invariant non-grid cells may aid in stabilizing hippocampal spatial

maps, while a subset of time varying non-grid cells could provide

complementary temporal information.

(c)(a)

(b)

FIGURE 8 Within the non-grid cell population there was no correspondence between changes in stability over time and other firing properties.

(a) Changes in spatial correlation (top, black circles) and rate overlap (bottom, gray circles) over time were unrelated to changes in cluster isolation
distance of mEC non-grid cells. (b) Changes over time were unrelated to various other characteristics of cell firing including average firing rate,
waveform shape, theta modulation strength, SI, or WSC. (c) Changes in firing properties over time were unrelated to characteristics used to
identify mEC cell classes of border cells, HD cells, and speed cells
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Many previous studies have identified a substantial subset of

mEC cells as nonspatial (Kropff et al., 2015; Latuske et al., 2015; Tang

et al., 2014; Tang et al., 2015; Zhang et al., 2013). In contrast, recent

work utilizing more sophisticated classification criteria found that

almost all mEC cells exhibit some degree of spatial firing (Diehl et al.,

2017; Hardcastle, Maheswaranathan, et al., 2017b). Our data add to

these findings with two main results. First, our finding that SI and

WSC, two metrics for evaluating spatial firing patterns, are both unim-

odally distributed suggests that spatial firing of mEC cells would be

more appropriately described as a continuum, as opposed to discrete

classes of spatial and nonspatial cells. For example, we observed some

degree of spatial stability even in nonspatial irregular cells and no dif-

ferences in the stability of spatial firing properties over time in irregu-

lar cells irrespective of whether they were classified as spatial or

nonspatial. These findings are consistent with the interpretation that

spatial and nonspatial cells are not mEC cell types that can be unam-

biguously separated. Second, we observed significantly higher SI and

WSC values for cells recorded in a smaller compared to a larger box.

The size of an environment thus has a substantial impact on the spa-

tial firing properties of mEC cells. Theoretical work has proposed that

spatial firing in mEC and hippocampus is strongly influenced by inter-

actions with environmental boundaries or other highly salient spatial

landmarks (Barry et al., 2006; Fuhs and Touretzky, 2006; Gothard

et al., 1996; Hartley et al., 2000), such that larger environments with

more distant boundaries would be predicted to result in poorer spatial

representations. Such an idea has gained experimental support by the

finding that hippocampal place fields are reliably generated in novel

small environments but not in larger ones following pharmacological

inactivation of the medial septal area. (Brandon et al., 2014; Wang

et al., 2015). Additionally, fine scale analysis of grid cell firing revealed

a gradual accumulation of error in spiking location that was corrected

after interactions with a border region (Hardcastle et al., 2015). Larger

environments with more distant borders would thus be predicted to

lead to greater error accumulation in spatial spiking. Accordingly, we

found that the spatial firing of mEC grid and non-grid cells is influ-

enced by environment size.

Along with identifying an effect of environment size on spatial firing

of both grid and irregular cells, we found that grid, border, and irregular

cells all varied their firing patterns as a function of time to a similar

degree over periods of less than 1 hr. While the spatial correlation

between sessions was high in grid cells and low in irregular cells, it

remained consistent over extended time intervals for each mEC cell type

and for individual cells, such that is was at approximately the same level

across 15, 30, and 45 min, even for cells with low average spatial simi-

larity. Furthermore, the spatial correlation of even the least spatial mEC

cells did not reach chance levels, indicating that the similarity across ses-

sions had not reached a floor, and that similarity could theoretically

decrease over time. Thus, the majority of mEC firing patterns did not

simply drift randomly over time, with increasing time leading to progres-

sively more drift, but rather varied around a stable set point, with grid

cells exhibiting less variation around this point and irregular cells exhibit-

ing more. In comparing to hippocampal place cells, the majority of mEC

cells thus resemble the behavior of CA3 over tens of minutes. While the

baseline reliability of CA3 place cells is considerably higher than most

mEC cells (see low spatial correlation values for mEC non-grid cells in

Figures 3b and 4c), both regions exhibit temporally stable firing patterns

with no relative decrease in similarity from the respective baselines. This

serves in stark contrast to the CA2 region where, even though baseline

reliability is generally high, systematic changes over time are already evi-

dent over tens of minutes (Mankin et al., 2015).

Major differences in the stability over time of grid cells compared

to non-grid cells began to emerge when examining spatial firing

(a)
(b)

FIGURE 9 Non-grid cells that changed over time were preferentially recorded from mEC Layer 3. (a) Comparison of the degree of change over

time in spatial correlation and firing rate overlap of individual non-grid cells. Data are colored based on experimental paradigm and cell class.
Irregular cells recorded in the large environment are further divided into spatial and nonspatial cells. Cells are also categorized based on their
putative anatomical location within mEC Layer 2 or Layer 3. Chance distributions for spatial correlation and rate overlap are shown as shaded
regions, redrawn from Figure 4d. (b) Changes in spatial correlation (top) and firing rate overlap (bottom) are presented separately for non-grid cells
recorded from Layer 2 and Layer 3. LB, large box. SB, small box [Color figure can be viewed at wileyonlinelibrary.com]
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patterns over periods of 6 hrs. Consistent with the notion that grid

cells may provide a universal spatial signal (Moser et al., 2008; Moser

et al., 2014), the stability of the grid signal remained high over

extended time periods. While changes in firing patterns over time

were also not observed in many non-grid cells, the non-grid popula-

tion was distinct in that it also included a subset of cells that changed.

These observations suggest that a subpopulation of mEC non-grid

cells may convey temporal information. Conversely, grid cells and the

large proportion of relatively stable non-grid cells may be a key source

of inputs to stabilize hippocampal maps.

One possibility that arises is that the subpopulation of mEC non-

grid cells that changed over time reflected a distinct functional cell

type, perhaps one dedicated to temporal coding. However, owing to

the fact that we saw no clear separation or indication of bimodality in

our distributions of change over time (Figure 4d and 9a) and the lack

of clear correspondence to any other firing properties, our data do not

support such a conclusion. Perhaps instead, systematic change over

time should not be thought of as falling into discrete categories but

rather that cells sit at various points on a continuum, perhaps not

unlike other functional properties in which mEC appears to be a

strongly heterogeneous population (Hardcastle, Ganguli, et al., 2017a).

Yet, stability or change over time does not appear to be uniform

across the mEC. The difference in the degree of variability over time

between Layer 2 and Layer 3 cells may reflect an important relation-

ship to hippocampal coding, with the more stable Layer 2 population

projecting to CA3 in support of a more stable representation and the

more time varying Layer 3 population projecting to CA1 in contribu-

tion to a more time varying representation (Mankin et al., 2012; van

Strien et al., 2009). As CA2 receives input from both mEC Layer 2 and

Layer 3 (Chevaleyre and Siegelbaum, 2010; Cui et al., 2013; Hitti and

Siegelbaum, 2014; but see Kohara et al., 2014), a time varying signal

could be inherited from the small subpopulation of highly varying

mEC cells, although given the large proportion of CA2 cells that

change over time and the large degree to which the network changes

(Lu et al., 2015; Mankin et al., 2015) other inputs or local integration

within the CA2 region are also likely sources of variability over time.

However, it must also be recognized that not all mEC Layer 3 cells

altered their firing properties over time, and that not all mEC cells,

either in Layer 2 or Layer 3, project directly to hippocampus (Tang

et al., 2015; Varga et al., 2010; Zhang et al., 2013). An equally feasible

situation then is that those non-grid cells which changed over time

could project exclusively within mEC, or that the mEC projection

downstream to hippocampus is composed of a mixed population of

cells that change over time and cells that do not change. While

attempts have been made to associate the in vivo firing patterns,

genetic and morphological profiles, and anatomical connections of

individual mEC cells (Latuske et al., 2015; Sun et al., 2015; Tang et al.,

2014; Zhang et al., 2013), there has been limited success in linking dif-

ferent classes of mEC cells and determining a clear, comprehensive

wiring diagram of entorhinal-hippocampal interactions. Future studies

and new methods are thus required to establish a more direct relation

between the inputs to hippocampus and the time-varying firing

patterns across hippocampal subregions.

Here, we find that mEC provides hippocampus with a diverse set

of spatially selective inputs of which most are highly stable over time,

a necessary feature for establishing reliable spatial maps. Yet hippo-

campus complements its spatial representation with information

about elapsed time, a feature that we also observe in only a subset of

mEC non-grid cells. Thus, our data suggest a possible contribution of

mEC to the diversity of temporal coding and the possibility that CA1

and CA2 inherit a time varying signal from mEC Layer 3 non-grid cells.

Importantly, we also find that the majority of the medial entorhinal

projection is highly reliable across time, consistent with findings from

lesion studies indicating a major role of mEC in providing hippocam-

pus with a stable spatial code over minutes and hours (Hales et al.,

2014; Schlesiger et al., 2015).
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